China launches electromagnetic satellite to study earthquake precursors

    Source: Xinhua| 2018-02-02 18:54:37|Editor: Jiaxin
    Video PlayerClose

    by Xinhua writers Quan Xiaoshu, Liu Wei

    JIUQUAN, Feb. 2 (Xinhua) -- China on Friday launched its first seismo-electromagnetic satellite to study seismic precursors, which might help establish a ground-space earthquake monitoring and forecasting network in the future.

    A Long March-2D rocket launched at 15:51 from Jiuquan Satellite Launch Center, in northwest China's Gobi Desert, carried the 730-kilogram China Seismo-Electromagnetic Satellite (CSES) into a sun-synchronous orbit at an altitude of about 500 kilometers.

    Known as Zhangheng 1 in Chinese, it will help scientists monitor the electromagnetic field, ionospheric plasma and high-energy particles for an expected mission life of five years, said Zhao Jian, a senior official with China National Space Administration (CNSA).

    The satellite is named after Zhang Heng, a renowned scholar of the East Han Dynasty (25-220), who pioneered earthquake studies by inventing the first ever seismoscope in the year 132.

    Zhangheng 1 will record electromagnetic data associated with earthquakes above 6 magnitude in China and those above 7 magnitude around the world, in a bid to identify patterns in the electromagnetic disturbances in the near-Earth environment, Zhao said.

    Covering the latitude area between 65 degrees north and 65 degrees south, it will focus on Chinese mainland, areas within 1,000 kilometers to China's land borders and two major global earthquake belts.

    Zhangheng 1 was funded by CNSA, developed by China Earthquake Administration (CEA) and produced by DFH Satellite Co., Ltd., a subsidiary of China Academy of Space Technology (CAST).

    Based on a CAST2000 platform, Zhangheng 1 is a cubic satellite, 1.4 meters on each side. It has a single solar panel and six booms, which will deploy and keep electromagnetic detectors more than 4 meters away from the satellite, said Zhou Feng, a senior manager with DFH Satellite Company.

    It carries a high-precision magnetometer, a search-coil magnetometer and electric field probes to measure components and intensity of the magnetic and electric fields. It is also equipped with a Langmuir probe, a plasma analyzer, a GNSS occultation receiver and a tri-band beacon to measure in-situ plasma and ionospheric profile as well, Zhou said.

    It also carries high-energy particle detectors, some of which are provided by Italian partners, and a magnetic field calibration device developed in Austria, according to Zhou.

    DETECTING EARTHQUAKE PRECURSORS

    China is one of the countries most affected by dynamic earthquakes, which are often widespread over terrain, high in magnitude and shallow in the epicenter.

    However, scientists around the world are still unable to predict earthquakes despite efforts by various countries since the 1950s.

    In recent years, more efforts have focused on monitoring seismo-electromagnetic anomalies in the near-Earth environment.

    Research shows that just before a quake, tectonic forces acting on the Earth's crust emit electromagnetic waves and twist magnetic field lines. But such electromagnetic phenomena are relatively weak and need further study to be useful.

    Zhangheng 1 will help scientists better understand the coupling mechanisms of the upper atmosphere, ionosphere and magnetosphere and the temporal variations of the geomagnetic field, and thus accumulate data for the research of seismic precursors, Zhao said.

    "Zhangheng 1 cannot be used to predict earthquakes directly, but it will help prepare the research and technologies for a ground-space earthquake monitoring and forecasting system in the future," he noted.

    Shen Xuhui, deputy chief designer of Zhangheng 1, said it will gather enough data to build models of the Earth's geomagnetic field and ionosphere, which are still unknown to China.

    "Zhangheng 1, with a wider coverage and better electromagnetic environment from space, will be an important supplement to earthquake monitoring in Qinghai-Tibet Plateau and sea areas that cannot be fully covered by the ground observation network," said Shen, also chief engineer of the Institute of Crustal Dynamics of the CEA.

    It will have access to more earthquake data, which will help identify patterns in pre-quake changes in the ionosphere via statistical analysis, Shen added.

    EXTREME MAGNETIC CLEANNESS

    In order to better detect the minor ionospheric changes caused by quakes and accumulate data on high-energy particles, plasma and electromagnetic fields, Zhangheng 1 must be extremely clean, which means it shall make the sensors free of its own disturbances in terms of magnetic fields and charging effects.

    The mission requires the satellite's own magnetism be controlled within 0.5 nT, which is equivalent to 1/100,000 of the background magnetic strength on the orbit. Zhangheng 1's electromagnetic cleanliness eventually reached an unprecedented 0.33 nT, through structural and design optimization.

    "We used hinged booms of nearly 5 meters with detectors on the far ends so as to decrease disturbances from the satellite platform. We also limited the use of magnetic materials, and ran strict simulation and magnetic tests to calibrate its data," said Yuan Shigeng, general director and chief designer of the satellite with CAST.

    For example, engineers in charge of the data transmission subsystem spent four years minimizing its electromagnetic emissions, making sure the collected data will return to researchers accurately.

    They had to find non-magnetic or low-magnetic materials for the system. "Many instruments and detectors in other satellites use steel screws, but we used less magnetic titanium screws instead," said Wu Zengyin, one of the satellite's main designers with CAST. "We also cut down the electric current loop area on the circuit boards so as to decrease their magnetic torque."

    "Before the launch, satellites in orbit with high magnetic cleanness had all been developed by other countries, and Zhangheng 1 fills the gap," Yuan Shigeng said.

    TOP STORIES
    EDITOR’S CHOICE
    MOST VIEWED
    EXPLORE XINHUANET
    010020070750000000000000011100001369450061
    主站蜘蛛池模板: 一级毛片免费不卡直观看| 免费毛片a线观看| 2021乱理片宅它网| 性高朝久久久久久久| 久章草在线精品视频免费观看| 狠狠色丁香久久婷婷综合五月| 国产亚洲精品第一综合| 5g影院5g天天爽永久免费影院| 怡红院在线播放| 久久精品无码一区二区www| 波多野结衣痴汉| 啊v在线免费观看| 黑人大战亚洲人精品一区| 国产麻豆视频免费观看| 一级欧美一级日韩| 日本大片免a费观看在线| 亚洲午夜精品一区二区公牛电影院 | 最近中文字幕免费mv视频| 亚洲色大情网站www| 羞羞视频免费网站含羞草| 国产成人精品久久| GOGOGO免费高清在线中国| 99精品众筹模特私拍在线| 97精品人妻一区二区三区香蕉 | 欧美最猛黑人xxxx黑人猛交98| 欧美精品黑人粗大| 最近中文字幕国语免费完整| 日本人内谢69xxxx| 妖精视频在线观看免费| 国内成人精品亚洲日本语音| 国产日产卡一卡二乱码| 国产三级在线观看播放| 午夜第九达达兔鲁鲁| 亚洲自国产拍揄拍| 亚洲av无码一区二区三区不卡| 久久一本一区二区三区| 一本色道久久88亚洲精品综合| 一二三四视频日本高清| 97青青青国产在线播放| 天天在线天天综合网色| 野花日本免费观看高清电影8|